Publicación de artículo en la revista SAR and QSAR in Environmental Research  - Moehs
Se ha publicado un completo artículo sobre el procedimiento que Moehs realiza en la evaluación de las impurezas genotóxicas de los APIs que fabrica.
MOEHS, internationalization, globalization, publications, science
23700
post-template-default,single,single-post,postid-23700,single-format-standard,ajax_fade,page_not_loaded,,qode-child-theme-ver-1.0.0,qode-theme-ver-11.0,qode-theme-bridge,wpb-js-composer js-comp-ver-6.1,vc_responsive

Publicación de artículo en la revista SAR and QSAR in Environmental Research 

Se ha publicado un completo artículo sobre el procedimiento que Moehs realiza en la evaluación de las impurezas genotóxicas de los APIs que fabrica.

Los autores de este artículo son Antonio Tintó Moliner y Manuel Martín, que desempeñan su labor en el departamento de recursos analíticos de Moehs y con su trabajo y esfuerzo han logrado dar a conocer estos procedimientos en una publicación científica.

La revista SAR and QSAR in Environmental Research pertenece a la editorial Taylor&Francis y está indexada en Chemical Abstracts Service; ISI Current Contents – Life Sciences; Embase; Google Scholar; Lexisnexis Environment Abstracts; MEDLINE; ProQuest y Science Citation Index Expanded.

A continuación se muestra el abstract de la publicación original:

ABSTRACT

A method for combining statistical-based QSAR predictions of two or more binary classification models is presented. It was assumed that all models were independent. This facilitated the combination of positive and negative predictions using a quantitative weight of evidence (qWoE) procedure based on Bayesian statistics and the additivity of the logarithms of the likelihood ratios. Previous studies combined more than one prediction but used arbitrary strengths for positive and negative predictions. In our approach, the combined models were validated by determining the sensitivity and specificity values, which are performance metrics that are a point of departure for obtaining values that measure the weight of evidence of positive and negative predictions. The developed method was experimentally applied in the prediction of Ames mutagenicity. The method achieved a similar accuracy to that of the experimental Ames test for this endpoint when the overall prediction was determined using a combination of the individual predictions of more than one model. Calculating the qWoE value would reduce the requirement for expert knowledge and decrease the subjectivity of the prediction. This method could be applied to other endpoints such as developmental toxicity and skin sensitisation with binary classification models.

Referencia:

Tintó-Moliner, A., & Martin, M. (2020). Quantitative weight of evidence method for combining predictions of quantitative structure-activity relationship models. SAR and QSAR in Environmental Research, 0(0), 1–19. https://doi.org/10.1080/1062936X.2020.1725116